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A nonlinear critical layer generated by the
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Two free waves propagating in a parallel shear flow generate a critical layer when
their nonlinear interaction induces a perturbation whose phase velocity matches the
basic-state velocity somewhere in the flow domain. The condition necessary for this
to occur may be interpreted as a resonance condition for a triad formed by the two
waves and a (singular) mode of the continuous spectrum associated with the shear.
The formation of the critical layer is investigated in the case of freely propagating
Rossby waves in a two-dimensional inviscid flow in a β-channel.

A weakly nonlinear analysis based on a normal-mode expansion in terms of Rossby
waves and modes of the continuous spectrum is developed; it leads to a system of
amplitude equations describing the evolution of the two Rossby waves and of the
modes of the continuous spectrum excited during the interaction. The assumption of
weak nonlinearity is not however self-consistent: it breaks down because nonlinearity
always becomes strong within the critical layer, however small the initial amplitudes
of the Rossby waves. This demonstrates the relevance of nonlinear critical layers to
monotonic, stable, unforced shear flows which sustain wave propagation.

A nonlinear critical-layer theory is developed that is analogous to the well-known
theory for forced critical layers. Differences arise because of the presence of the Rossby
waves: the vorticity in the critical layer is advected in the cross-stream direction by
the oscillatory velocity field due to the Rossby waves. An equation is derived which
governs the modification of the Rossby waves that results from their interaction; it
indicates that the two Rossby waves are undisturbed at leading order. An analogue
of the Stewartson–Warn–Warn analytical solution is also considered.

1. Introduction
Critical-layer theory is an important element in the study of waves and instabilities

in parallel shear flows (see e.g. the reviews by Stewartson 1981 and Maslowe 1986).
Of particular interest is the inviscid dynamics of Rossby-wave critical layers, which
has attracted considerable attention since the mid-seventies because of its geophysical
relevance. Indeed, the strong inhomogeneity of critical-layer flows, with the coexistence
of linear and nonlinear regions, has much in common with Rossby-wave breaking
events observed in the atmosphere (e.g. Haynes 1989 and references therein).

In the context of two-dimensional flows on the β-plane, critical-layer behaviour is
generally manifested in two distinct situations: in unstable flows, when the marginally
stable mode possesses a critical level; and in forced flows, when the phase velocity
of the forcing locally matches the flow velocity. A comprehensive analysis of these

† Present address: Department of Applied Mathematics and Theoretical Physics, University of
Cambridge, Silver Street, Cambridge CB3 9EW, UK.



320 J. Vanneste

two situations was provided by Brown & Stewartson (1978), and by Stewartson
(1978) and Warn & Warn (1978), respectively. Using matched asymptotics, they
developed simplified equations describing the nonlinear evolution of the critical layer.
Subsequent work focused on the forced critical layer, analysing a particular analytical
solution found by Stewartson (1978) and Warn & Warn (1978) (referred to as the
SWW solution; e.g. Killworth & McIntyre 1985) or using numerical simulations to
investigate more general parameter settings (e.g. Haynes 1989).

In this paper, we shall be concerned with a third situation in which nonlinear critical
layers are relevant: unforced, stable, shear flows. Tung (1983) considered the evolution
of disturbances in a linear shear flow on an infinite β-plane. He concluded (and his
conclusion can be extended to any monotonic shear, as pointed out by Brunet &
Haynes 1995) that the disturbance dynamics is essentially linear if it is initially so. This
is because the disturbance is a sheared disturbance (e.g. Haynes 1987) for which the
growth of the vorticity gradient is compensated by a decrease of the streamfunction
and the alignment of streamlines with constant-vorticity lines. Tung’s analysis relied
on certain hypotheses. When these are relaxed it is possible for nonlinear effects to
become important in stable shear flows. A first (implicit) hypothesis concerns the
nature of the initial condition: Haynes (1987) showed that nonlinearity becomes
important if disturbances with very short cross-stream wavelengths are excited, and,
as a consequence, that sheared disturbances are unstable. A second hypothesis is that
of a monotonic shear flow. For a parabolic jet with weak absolute-vorticity gradient,
Brunet & Warn (1990) showed that the dynamics of disturbances always becomes
nonlinear in a narrow region (a critical layer) at the jet maximum, regardless of the
initial amplitude of the disturbance. Brunet & Haynes (1995) derived a simplified
equation describing the dynamics within this critical layer, integrated it numerically,
and found that coherent structures are formed at the tip of the jet. A third hypothesis
for Tung’s (1983) conclusion about nonlinear effects in shear flows is that of an
unbounded domain in the cross-stream direction, which implies a basic-flow velocity
going from −∞ to +∞. As a result, there are no freely propagating waves or, in other
words, no regular normal modes. When the basic-flow velocity is bounded and when
there is a β-effect, regular normal modes can exist in the form of Rossby waves. We
show in this paper that this leads to significant nonlinear effects in flows which are
only weakly disturbed.

We consider a monotonic shear flow U(y) in a channel with an initial disturbance
that consists of two free Rossby waves, with wavenumbers k1 and k2 and frequencies
ω1 and ω2. These Rossby waves are such that the term produced by their nonlinear
interaction, with frequency ω1 + ω2 and wavenumber k1 + k2, has a phase velocity
matching the flow velocity at some location y = y?, which may be regarded as a
critical level. Assuming weak amplitudes for the Rossby waves, the evolution of the
disturbance can be analysed using perturbative approaches. A straightforward regular
perturbation expansion indicates the secular growth of the second-order vorticity in
the vicinity of y? and thus breaks down for long time. More sophisticated perturbative
approaches are therefore necessary. Two such approaches are developed in the paper:
a weakly nonlinear analysis, which extends the techniques used to study wave-triad
interactions (e.g. Craik 1985), and a critical-layer analysis, which employs matched-
asymptotics techniques.

The weakly nonlinear analysis is motivated by the analogy between the Rossby-
wave interaction considered here and standard wave-triad interactions. As is well-
known, a normal-mode approach in a shear flow indicates that, in addition to a
discrete spectrum of regular modes (the Rossby waves), there is for each streamwise
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wavenumber k a continuous spectrum of (singular) modes, with phase velocities in the
range of the basic-flow velocity – a superposition of such singular modes represents a
sheared disturbance. Ignoring the difficulties associated with the singularities of these
modes and the continuous nature of the spectrum, one may interpret the Rossby-
wave interaction under study as the resonant interaction between two Rossby waves
and a singular mode, namely that with phase velocity U(y?). In the light of this
interpretation, it seems interesting to attack the problem using an approach that
parallels as much as possible the approach employed for resonant wave triads. A first
step in this direction was taken in an earlier paper (Vanneste 1996), which describes a
technique for studying weakly nonlinear interactions in shear flows including both the
Rossby waves and the continuous spectrum. This technique uses recent results about
the continuous spectrum due to Balmforth & Morrison (1998). It yields evolution
equations for the amplitudes of the Rossby waves as well as for the amplitudes of
the singular modes forced by the interactions between the two Rossby waves. These
equations were used to examine the Rossby-wave interaction problem, but only at a
quasi-linear level, i.e. when the feedback of the forced singular modes onto the waves
can be neglected. It was concluded that a singularity forms in the long-time limit at
the critical level y = y?. However, by analogy with wave-triad interactions, one might
expect the formation of a singularity to be suppressed if the feedback is retained. The
weakly nonlinear analysis developed here investigates this possibility by extending
the previous work to include the effect of the feedback. It is shown that this effect
is in fact too weak to stop the singularity formation. This indicates that the weakly
nonlinear theory cannot remain self-consistent (by contrast with the situation for
wave-triad interactions), and corresponds physically to the development of a strongly
nonlinear critical layer in the vicinity of y?. Specifically, if the initial amplitudes of
the Rossby waves are proportional to the small parameter ε, the flow becomes fully
nonlinear after a time proportional to ε−1 in a critical layer of width proportional to
ε.

To study the nonlinear evolution of this critical layer in detail, we use matched
asymptotics and develop a critical-layer theory analogous to that of Stewartson (1978)
and Warn & Warn (1978). To a first approximation, one can interpret the critical
layer as resulting from an internal forcing – associated with the nonlinear interaction
between the Rossby waves – instead of the standard boundary forcing. However, the
presence of Rossby waves in the flow has an important consequence: the vorticity in
the critical layer is advected in the cross-stream direction by the Rossby-wave-induced
velocity field. Moreover, because we consider a free initial-value problem, the Rossby
waves are disturbed by their interaction and the presence of a critical layer. This
disturbance is however small; a detailed calculation shows that the Rossby waves
amplitudes are unchanged to leading order on the time scale relevant for the critical-
layer dynamics. An analogue of the SWW solution is discussed in order to illustrate
the differences between the critical layer generated by Rossby-wave interaction and
the forced critical layer. It is emphasized that this solution cannot be obtained
rigorously, as the long-wave limit on which it rests drastically changes the nature of
the Rossby-wave propagation, invalidating our analysis.

The plan of the paper is as follows. In § 2 the Rossby-wave interaction model
is described, and the conditions necessary for the formation of a critical layer are
discussed. In § 3 a straightforward regular perturbation expansion is performed and it
is demonstrated that it breaks down regardless of the weakness of the initial Rossby-
wave excitation. Weakly nonlinear amplitude equations are derived in § 4. A truncated
system of amplitude equations is then used to study the Rossby-wave interaction and
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it is shown that the evolution does not remain weakly nonlinear, for a critical layer
develops. In § 5 simplified equations governing the critical-layer dynamics and the
perturbation of the Rossby waves are derived using matched asymptotics, and the
analogue of the SWW solution is considered in § 6. The paper concludes with a
discussion in § 7.

2. Formulation
2.1. Governing equations

We begin with the vorticity equation for two-dimensional flows in a β-channel and
consider the evolution of a disturbance to a steady parallel flow U(y). Scaling the
streamwise (zonal) coordinate x by a characteristic length scale L, the cross-stream
(meridional) coordinate y by the width of the channel D, the velocity by the range of
basic-flow velocity ∆U, and time by L/∆U, the equation governing the evolution of
the disturbance may be written

(∂t +U∂x) q + Q′∂xψ + ε∂(ψ, q) = 0, (2.1)

where the disturbance vorticity q and the disturbance streamfunction ψ are related
by

q = ∇2ψ := (µ2∂2
xx + ∂2

yy)ψ,

with µ := D/L. The associated boundary conditions of no-normal flow and conser-
vation of circulation (e.g. Pedlosky 1987, § 3.25) read

∂xψ = 0 and ∂t

∫
∂yψ dx = 0 at y = 0, 1.

In (2.1), Q′ := β − U ′′ (with ′ := d/dy) is the basic vorticity gradient and ε � 1
characterizes the disturbance amplitude. The non-dimensional parameter β, related
to its dimensional counterpart β̃ through β = D2β̃/∆U, is assumed to be of order
one. We also assume that the basic flow satisfies

U ′ > 0 and Q′ > 0 for y ∈ [0, 1].

The first condition ensures the monotonicity of the basic flow, and the second
condition its nonlinear stability (as proved using Arnold’s energy–Casimir method;
see e.g. Holm et al. 1985). For convenience, one can take advantage of the translational
invariance of (2.1) in x and fix the minimum and maximum basic velocities in the
channel as Um := U(0) = 0 and UM := U(1) = 1.

Introducing modal solutions q = qk(y) exp[ik(x − ct)] in the linearization of (2.1)
yields the Rayleigh–Kuo equation which, for this geometry, admits a discrete spectrum
of Rossby waves with phase velocities ck,n < Um, n = 1, 2, . . ., and a continuous
spectrum of modes with Um < c < UM (see Appendix A). The modes of the
continuous spectrum are singular at their critical level yc defined by U(yc) = c; in
monotonic basic flows, the critical level position can be used instead of the phase
velocity to identify each singular mode.

Consider now two Rossby waves with wavenumbers k1, k2 and indices n1, n2, and
thus with frequencies ω1 = k1 ck1 ,n1

and ω2 = k2 ck2 ,n2
. Through nonlinear interaction

they excite modes with wavenumber k? satisfying

k? + k1 + k2 = 0. (2.2)

(By convention, we consider sum interactions only, allowing for both positive and
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negative values of each wavenumber.) Among these modes, those belonging to the
continuous spectrum are significantly excited provided that

∃ y? ∈ [0, 1] : k?U(y?) + ω1 + ω2 = 0, (2.3)

i.e. provided that a singular mode, with critical level position yc = y?, forms a
resonant triad with the two Rossby waves. Equations (2.2) and (2.3) define the type
of interactions studied in this paper.

2.2. Interaction conditions

Restrictions on the wavenumbers participating in the interaction can be derived from
(2.2)–(2.3) by noting that

k1

c2 −U(y?)
=

k2

U(y?)− c1

=
k?

c1 − c2

.

With Um = 0, one can choose c1 < c2 < 0, whence k1k? > 0 and k2k? < 0. Without
loss of generality, k1 can be taken positive to give the condition

k1 > 0, k2 < 0, k? > 0, (2.4)

which indicates that one of the Rossby waves always has the largest wavenumber
(in absolute value). Conditions (2.2)–(2.3) are analogous to the resonant interaction
conditions in the standard three-wave interaction, but with a dispersion relation
containing two distinct parts: one associated with the Rossby waves, given by ω =
ω(k) = kck,n, and the other associated with singular modes, given by the double
inequality kUm < ω < kUM and thus corresponding to a sector in the (k, ω)-plane. The
standard graphical construction used to locate resonant triads (e.g. Simmons 1969)
can be adapted for the interaction between two Rossby waves and a singular mode.
This is illustrated in figure 1, which displays a typical Rossby-wave dispersion relation
in the (k, ω)-coordinate system and the (shaded) sector associated with singular modes
in another coordinate system denoted by (ks, ωs). This system has its origin at a point
(k1, ω1) of the Rossby-wave dispersion curve. Any other point (|k2|, ω2) (represented
by a dot) on the dispersion curve lying in the shaded area forms a resonant triad with
the first Rossby wave and a singular mode. Indeed, taking (2.4) into account, it can
be verified on the figure that the singular mode with wavenumber ks = k? and phase
velocity U(y?) given by the slope of the dashed line satisfies (2.2)–(2.3). Because the
singular modes belong to a continuous rather than discrete spectrum, a single given
Rossby wave forms an infinite number of resonant triads involving singular modes.
This is in contrast with the standard three-wave interaction and can be particularly
important for domains periodic in the x-direction, when most Rossby waves cannot
be involved in regular wave triads because of the wavenumber discretization.

3. Regular perturbation expansion
We now study the evolution of a disturbance that initially consists of two weak-

amplitude Rossby waves satisfying (2.2)–(2.3). A regular perturbation expansion is
first used to examine this evolution. Although such an expansion can be expected to
break down at some point, it is useful to consider it in detail: the solution it yields
describes the early evolution of the system, and the nature of the breakdown guides
the derivation of the singular perturbation theory which is developed in § 5. We thus
look for a solution of (2.1) given by the expansion

ψ = ψ(0) + εψ(1) + · · · and q = q(0) + εq(1) + · · · , (3.1)
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Figure 1. Graphical solution of the equations (2.2)–(2.3) for the resonance of two Rossby waves and
a singular mode. A typical dispersion relation for Rossby waves is displayed in the (k, ω)-coordinate
system (solid curve), while the singular modes are located in the (ks, ωs)-coordinate system (shaded
sector; see text for details).

where the leading-order term is the superposition of two Rossby waves:

ψ(0) = Re
[
R1 ψ1(y) eiθ1 + R2 ψ2(y) eiθ2

]
, (3.2)

with θj := kjx− ωjt and ψj := ψkj ,nj , j = 1, 2. The amplitudes R1, R2 are fixed by the
initial condition. It is convenient to use a reference frame moving at velocity U(y?),
so that (2.3) reduces to

ω1 + ω2 = 0, with U(y?) = 0.

Introducing (3.2) into (2.1) leads at O(ε) to the inhomogeneous equation

(∂t +U∂x) q
(1) + Q′∂xψ

(1) = 1
2
Re
[
(R1R2)

∗ f+(y) eik?x + R1(R2)
∗ f−(y) ei(θ1−θ2)

+R2
1 g1(y) e2iθ1 + R2

2 g2(y) e2iθ2
]
. (3.3)

The functions f+, f−, g1 and g2 are defined in terms of ψ1 and ψ2; in particular,

f+(y) := i
[
k1ψ1(q2)

′ − k2(ψ1)
′q2 + k2ψ2(q1)

′ − k1(ψ2)
′q1

]
,

where qj := ψ′′j − k2
j ψj . The phase velocities corresponding to the last three terms of

(3.3) are all smaller than the minimum velocity in the channel (see (2.4)); the response
of ψ(1) to these terms can therefore be computed without difficulty if we assume they
are not resonant with free Rossby waves. The first term on the right-hand side of
(3.3), by contrast, has a zero phase velocity and is thus associated with a critical level
at y = y?. We now focus on the response to this term.

In Vanneste (1996), this response was computed using an expansion in terms of the
singular modes with wavenumber k?. A time-dependent expression was derived for
the response streamfunction, which was shown to tend to a stationary structure of
the form Re[φ(y) exp(ik?x)] in the long-time limit (see equation (4.9) in that paper).
Here, we derive this stationary structure directly, in a form that will be more suited
to the analysis of § 5. From (3.3), φ satisfies the equation

U(y)
(
φ′′ − µ2k2

?φ
)

+ Q′φ = h, with φ(0) = φ(1) = 0, (3.4)

where h := −i(R1R2)
∗f+/(2k?). The method of variation of parameters can be em-

ployed to obtain φ. Using two independent Frobenius solutions of the homogeneous
version of (3.4) on each side of the critical level, φ is expressed in terms of four
constants. The boundary conditions at y = 0, 1 as well as continuity at the critical
level provide three relations between these constants. As usual, a fourth relation is
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found by considering the velocity jump[
dφ

dy

]y+
?

y−?

:= lim
ε→0+

(
dφ

dy

∣∣∣∣
y?+ε

− dφ

dy

∣∣∣∣
y?−ε

)
.

The velocity jump is derived from the linearized evolution equation for the vorticity
which remains transient for all time (cf. Stewartson 1978). In the long-time limit this
equation shows that the vorticity grows linearly in time in the vicinity of the critical
level; the velocity jump, however, is bounded and given by[

dφ

dy

]y+
?

y−?

= iπ
h? − Q′?φ(y?)

U ′?
, (3.5)

where the subscripts ? denote functions evaluated for y = y?. Identifying (3.5) with
the expression for the velocity jump derived from the Frobenius solutions provides
the fourth relation between the constants which are then completely determined.

It proves convenient to decompose φ into two parts so as to isolate the contribution
due to the internal forcing h and that due to velocity jump imposed at y = y? by
the vorticity dynamics. The first part, φf say, is thus defined as the response to the
forcing h with an imposed zero velocity jump at the critical level; the other part
corresponds to a free solution with an imposed velocity jump. This latter part can be
recognized as a multiple of the singular mode ψk?(y; y?) defined in Appendix A, so
that the complete solution takes the compact form

φ(y) = φf (y) + C ψk?(y; y?), (3.6)

where the arbitrary constant C is determined by the velocity jump (3.5). By definition
of φf and of the singular modes, (3.6) yields[

dφ

dy

]y+
?

y−?

= λk?(y?)C, (3.7)

where, as detailed in Appendix A, λk?(y?) =
[
dψk?(y; y?)/dy

]y+
?

y−?
is fixed by the normal-

ization chosen for ψk?(y; y?). Equations (3.5)–(3.7) lead to an expression for C .
The solution just developed is clearly not uniformly valid in time: the vorticity

increases linearly in time near the critical level y = y?, and thus neglected nonlinear
terms can be expected to become important for t = O(ε−1).† An important factor
neglected by the regular expansion is the feedback of the response φ (i.e. the excited
singular modes) on the Rossby waves. The role of this feedback is analysed in the
next section using a weakly nonlinear approach.

4. Weakly nonlinear analysis
As already mentioned, the problem under consideration can be interpreted as the

resonant interaction of two Rossby waves with a singular mode of the continuous
spectrum. This interaction presents similarities with standard wave-triad interactions
in the light of which it does not come as a surprise that the regular perturbation
expansion of the previous section fails for t = O(ε−1): on such time scale, one might

† In the particular case where h? = Q′?φ
f
?, the vorticity does not increase, and therefore the linear

solution does not break down in the long-time limit. We do not consider this situation in what
follows.
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expect the system to be governed by equations similar to the three-wave equations
governing wave triads, i.e. weakly nonlinear equations that take into account the full
coupling between the Rossby waves and the singular modes. In this section, we derive
such equations and analyse their behaviour. This analysis proves instructive although
it turns out that the weakly nonlinear equations are not self-consistent: they predict
that the nonlinearity does not remain weak because of the formation of a critical
layer.

A technique for deriving weakly nonlinear equations for disturbances in shear flows
was described in Vanneste (1996). It relies on the normal-mode expansion reviewed
in Appendix A and leads to evolution equations for the amplitudes of the Rossby
waves and the singular modes. In principle, the technique is straightforward: the
expansion (A 4) with time-dependent amplitudes Ak,n(t) and Ak(yc; t) is introduced
into the nonlinear evolution equation (2.1), and the orthogonality relations (A 5) are
used to project the resulting equation onto each mode. As a result, equations of the
following form are obtained for the Rossby-wave and singular mode amplitudes:

∂tAk,n(t) = ε n.l.t. and ∂tAk(yc; t) = ε n.l.t., (4.1)

where n.l.t. denotes nonlinear terms.
In order to use these equations practically, one must truncate the infinite-dimensional

system they constitute and derive simplified systems which retain the essence of a
particular interaction. In particular, the simplified system we are interested in should
consist of equations for the two excited Rossby waves and for the singular modes with
wavenumber k?; all these singular modes must be taken into account since truncation
to a single one (e.g. the one with critical level at y?) would lead to singular integrals.
It should however be realized that the truncation cannot be made directly: indeed,
due to the presence of ∂yq in the nonlinearity of (2.1) and of the Dirac distribution
in the singular mode vorticity, terms of the form

Ak′ ,n(t) e−iωk′ ,nt

∫ 1

0

δ′(y − yc)Ak(yc, t) e−ikU(yc)tF(k, k′, n, yc) dyc ei(k+k′)x

= −ikU ′(y) t Ak′ ,n(t)Ak(y, t)F(k, k′, n, y) e−i(kU(y)+ωk′ ,n)t ei(k+k′)x + · · ·

appear when the normal mode expansion is introduced into (2.1). Here, F is a smooth
function whose precise form is unimportant. After projection, these terms lead to
explicit linear time dependences in the amplitude equations for the singular modes,
and thus to the presence of secularities even in the absence of resonance. Physically,
these terms correspond to the cross-stream advection of the vorticity associated
with singular modes by the Rossby-wave velocity field; they are secular because the
vorticity gradient of a superposition of singular modes is growing linearly in time.†

To eliminate these secularities, we introduce a variable transformation from q to q̃,
where

q̃ := q − ε∂y
(
q2

2Q′

)
. (4.2)

As detailed below, this transformation leads to an equation for the vorticity-like
quantity q̃ with the same linear part as the equation for q, but with a modified
nonlinear part that does not contain y-derivatives of q̃. Thanks to this modification,

† More complex time dependences arise from the self-advection of singular modes; but since
the superposition of these modes represents sheared disturbances, Tung’s (1983) argument can be
employed to show that the corresponding contributions decrease when t = O(ε−1) for most initial
conditions. Therefore they do not affect the truncation process.
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the secularities are removed from (4.1). For the transformation to be one-to-one, it is
necessary that

ε|∂yq| � Q′, (4.3)

which is a statement of weak nonlinearity and a condition for positive cross-stream
gradient of absolute vorticity. This condition is likely to be violated for long time,
in which case it is not obvious whether any weakly nonlinear theory can remain
relevant. It is nevertheless possible to obtain a version of (4.2) which would be valid
for longer time. We defer the description of this transformation to the Discussion,
§ 7; the main purpose of this section is to obtain a generic form of the amplitude
equations governing the interaction between two Rossby waves and the continuous
spectrum, and this form does not depend on the precise expression of the variable
transformation. Taking the time derivative of (4.2), using (2.1) and condition (4.3),
and neglecting terms of O(ε2) and higher, one derives an evolution equation for q̃ of
the form

(∂t +U∂x) q̃ + Q′∂xψ − ε ∂x
(
q̃∂yψ +

U ′

2Q′
q̃2

)
= 0, (4.4)

where the streamfunction is derived from the approximate relation

∇2ψ = q̃ + ε ∂y

(
q̃2

2Q′

)
.

The evolution equation for q̃ does not contain y-derivatives of q̃. Thus, the secularities
associated with the growing vorticity gradient of superpositions of singular modes
have been removed. Equation (4.4) is also such that the k = 0 component of q̃ is
invariant, i.e. there is no wave–mean flow interaction for (4.4). We can now expand q̃
rather than q in normal modes according to (A 4) and apply the procedure leading to
amplitude equations. These are again given by (4.1) (because the linearized equation
is the same for q and q̃), but without linearly growing terms on the right-hand side.
A truncation is then possible, provided that the singular mode amplitudes Ak(yc; t)
are smooth functions of yc. We shall see that this assumption does not remain valid
in our problem, indicating the formation of a critical layer where the nonlinearity is
not weak.

The truncated system governing the interaction between the two Rossby waves
(with amplitudes A1(t) := Ak1 ,n1

(t) and A2(t) := Ak2 ,n2
(t)) and the singular modes (with

amplitudes Ak?(yc; t)) has the form

∂tA1(t) = ε[A2(t)]
∗
∫ 1

0

I1(yc)[Ak?(yc; t)]
∗ eiΩ(yc)t dyc,

∂tA2(t) = ε[A1(t)]
∗
∫ 1

0

I2(yc)[Ak?(yc; t)]
∗ eiΩ(yc)t dyc,

∂tAk?(yc; t) = εIk?(yc)[A1(t)A2(t)]
∗ eiΩ(yc)t,


(4.5)

which is a direct extension of the standard three-wave equations. The corresponding
initial conditions are simply A1(0) = R1, A2(0) = R2 and Ak?(yc; t) = 0, ∀yc ∈ [0, 1]. In
the above equation, Ω(yc) := k?U(yc) + ω1 + ω2 satisfies Ω(y?) = 0. The interaction
coefficients I1, I2 and Ik? are functions of the critical level position yc; they are defined
by y-integrals of the structures ψ1(y), ψ2(y) and ψk?(y; yc), but their explicit expressions
are not necessary here, since we examine only the qualitative behaviour of (4.5). It is
important to note that (pseudo)energy and (pseudo)momentum conservation and the
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Figure 2. Time evolution of the amplitudes A1(T2) and A2(T2) of the interacting Rossby waves as
predicted by the weakly nonlinear theory.

fact that Q′ > 0 (or equivalently nonlinear stability) require k1I1(y?), k2I2(y?), k?Ik?(y?)
to have the same sign (cf. Ripa 1981; Vanneste & Vial 1994). Together with (2.4), this
indicates that I2(y?) is oppositely signed to the other two interaction coefficients.

Using (4.5), we can now assess whether the feedback of the singular modes on
the Rossby waves is sufficient to limit the growth of the singular modes – that is,
whether the interaction leads to balanced weakly nonlinear dynamics, as is the case
for standard wave triads. Simple scaling arguments allow us to conclude that this
is not so. Let Tα := εαt, where α is a constant to be determined, be the slow time
relevant to the weakly nonlinear dynamics. It is clear that, due to phase mixing, only
the singular modes with Yα := (yc − y?)/εα = O(1) contribute to the integrals in (4.5).
Rewriting (4.5) in terms of Tα and Yα, we can expand the interaction coefficients and
extend the range of integration to obtain the approximate system

∂TαA1(Tα) = ε[A2(Tα)]
∗I1(y?)

∫ ∞
−∞

[Ak?(Yα;Tα)]
∗ eiΩ′?YαTα dYα,

∂TαA2(Tα) = ε[A1(Tα)]
∗I2(y?)

∫ ∞
−∞

[Ak?(Yα;Tα)]
∗ eiΩ′?YαTα dYα,

∂TαAk?(Yα; t) = ε1−αIk?(y?)[A1(Tα)A2(Tα)]
∗ eiΩ′?YαTα .


(4.6)

Regardless of the value of α, the first two equations indicate that a nonlinear balance is
possible only if Ak?(Yα;Tα) = O(ε−1), i.e. if the singular modes have a large amplitude.
The last equation of (4.6) then shows that the proper scaling is given by α = 2,
indicating that nonlinear balance is achieved for t = O(ε−2). At that time, the weakly
nonlinear equations are not valid, since the singular mode amplitudes Ak?(Yα;Tα) are
large. This indicates that the weakly nonlinear theory does not remain self-consistent.

This scaling argument can be verified by a direct integration of (4.5) or (4.6). This
integration can be performed numerically or, in the case of (4.6), analytically. A
typical solution, obtained with initial conditions A1(0) = R1 = 0.5, A2(0) = R2 = 1,
with I1(y?) = −I2(y?) = Ik? = 1 and Ω′? = 1 is displayed in figures 2 and 3. The scaled

coordinates T2 and Y2 and amplitudes Âk? = εAk? are employed. For t = O(ε−1) the
Rossby wave amplitudes are almost unaffected by their interaction with the singular
modes. As a consequence, the amplitude of the singular modes with yc ≈ y? continues
to grow. It is only when the singular mode amplitude is very large (Ak?(y?; t) = O(ε−1))
and thus when the weakly nonlinear analysis has broken down that, according to
(4.6), the growth stops and a steady state is attained.
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Figure 3. Time evolution of the amplitude Âk? (Y2;T2) = εAk? (Y2;T2) of the singular modes as
predicted by the weakly nonlinear theory. Only a narrow band of modes is excited as appears from
the relation yc = y? + ε2Y2 between the critical level position yc and the scaled coordinate Y2. Note
that saturation occurs for Ak? (0, T2) = O(ε−1)� 1.

The breakdown of the weakly nonlinear theory indicates that the free evolution
of the flow leads to strong nonlinearity. Since this nonlinearity is confined within
a narrow critical layer surrounding y = y?, we can use matched asymptotics to
derive a simplified equation governing the long-time evolution of the flow, as done by
Stewartson (1978) and Warn & Warn (1978) in their study of the forced Rossby-wave
critical layer.

5. Critical-layer analysis
A preliminary step for the critical-layer analysis is the determination of the temporal

and spatial scales relevant for the nonlinear evolution of the critical layer. These
scales can be obtained by examining the nature of the breakdown of the regular
perturbation expansion or of the weakly nonlinear analysis. Let us first return to the
regular perturbation expansion of § 3. The linearized vorticity equation indicates that
the vorticity grows linearly with time in a critical layer whose width decreases like
t−1. Proceeding with the regular expansion, we compute the forcing term ψ(0)

x q
(1)
y in

the equation for q(2) and obtain a time dependence of the type t2 exp(−iωnt) within
the critical layer. Therefore, the dominant behaviour of q(2) is found to have the form
t2 exp(−iωnt). We thus conclude that the regular expansion (3.1) breaks down for
t = O(ε−1) in a layer of width ε.† In fact, the same conclusion can be drawn from the
weakly nonlinear analysis of § 4, since it is essentially equivalent to the linear one for
t < O(ε−1). The weakly nonlinear theory breaks down because it assumes a smooth
dependence of Ak? on yc, an assumption which ceases to hold for t = O(ε−1).

We start the critical-layer analysis by defining the slow time

T := εt

which changes by O(1) during the nonlinear evolution. It is again convenient to use
a reference frame such that U(y?) = 0 and therefore ω1 = −ω2. Because various
frequencies are present in the system (ω1, ω2 and their harmonics), the fast time t
cannot be entirely removed as is the case for the forced critical layer. Yet, we can

† The time after which the regular expansion breaks down and the corresponding critical-layer
width found here are different from those found in the standard forced critical layer (O(ε) vs.
O(ε1/2)). This is because the forcing associated with the interacting Rossby waves is O(ε2), whereas
the external forcing is O(ε) in the standard critical layer.
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neglect the transients by considering dependences on t of the form exp(iΩt) only,
where Ω = mω1 + nω2 and m, n are integers. In what follows, we use the superscripts
s and r to denote the parts of the solution with frequencies 0 and ω1 = −ω2,
respectively. The other harmonics are gathered in terms denoted by h. We refer to
terms depending only on T as slow, and to those depending also on t as fast.

5.1. Outer solution

In the outer region (i.e. y − y? � ε) the regular expansion (3.1) is valid, and at
leading order one recovers the superposition of Rossby waves (3.2), with time-
dependent amplitudes R1(T ), R2(T ). At the next order, (3.3) is found with the extra
term −∂TR1q1 exp(iθ1) − ∂TR2q2 exp(iθ2) on the right-hand side. Solvability then re-
quires

∂TR1 = ∂TR2 = 0.

To leading order, the Rossby waves are thus undisturbed by their interaction. An
expression for ψ(1) can be written in the general form

ψ(1) = ψ(1,s) + ψ(1,r) + ψ(1,h),

where

ψ(1,s) = Re

[
φf (y) eik?x +

∞∑
k=1

Ck(T )ψk(y; y?) eikx

]
(5.1)

contains all harmonics with the exception of a mean (k = 0) component which
can be shown to vanish. (Note that we have adopted the notation

∑∞
k=1 as a

shorthand: assuming that the channel is periodic in x, the sum is in fact taken over
all wavenumbers that are multiples of 2π/L, where L is the channel period; if the
channel is infinite, the sum must be interpreted as an integral.) The evolution of the
coefficients Ck(T ) is determined from the dynamics inside the critical layer (as is the
case for the forced critical layer). A free solution

ψ(1,r) = Re
[
S1(T )ψ1(y) eiθ1 + S2(T )ψ2(y) eiθ2

]
, (5.2)

representing a small correction to the initial Rossby waves, is added to ψ(1) so as
to cancel secular terms appearing at the next order. An explicit expression for the
harmonic term ψ(1,h) can be obtained but we do not describe it here. For our purpose
it suffices to note that it is independent of T and smooth at the critical level.

Proceeding with the expansion, one finds at O(ε2) the equation

(∂t +U∂x) q
(2) + Q′∂xψ

(2) = −∂Tq(1) − ∂(ψ(0), q(1))− ∂(ψ(1), q(0)) (5.3)

whose solution can again be written

ψ(2) = ψ(2,s) + ψ(2,r) + ψ(2,h).

The component ψ(2,s) can be computed without difficulty. Near the critical level,
ψ(2,s) ∼ ln |y − y?|, which leads to logarithmic terms in the inner expansion. Although
a complete expression for ψ(2) is not strictly necessary as it represents a small
correction to ψ(1), it is crucial to consider the derivation of ψ(2,r) carefully, for the
solvability condition which will be required determines the evolution of S1 and S2 in
(5.2). As detailed in Appendix B, the derivation of this solvability condition is not
straightforward for two reasons. First, some of the resonant terms are singular at
y = y?, and thus we need to derive the solvability condition for a singular equation; to
this end, we employ a method introduced by Benney & Maslowe (1975). This method
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requires an explicit derivation of ψ(2,r), and this leads to the second difficulty, namely
the fact that ψ(2,r) has a discontinuous y-derivative at y?. Indeed, as will be explicitly
demonstrated below, the dynamics inside the critical layer imposes a velocity jump
across the critical layer on the fast solution at this order. In Appendix B, we describe
a derivation of the solvability conditions taking these elements into account. It leads
to two equations of the form

∂TSn + Pn(T ) = 0, n = 1, 2, (5.4)

which govern the evolution of the O(ε) modification of the initial Rossby waves due
to their interaction. The Pn have the general form

Pn(T ) = cn + dn[Ck?(T )]∗,

where cn and dn are complex constants. This leads to two remarks. First, the Sn are
coupled to the critical-layer dynamics through Ck? . Because the critical-layer equation
governing the evolution of the Ck does not depend on Sn (see § 5.2), this implies that
the amplitudes Sn of the Rossby-wave modification are slaved to the Ck? . Next, (5.4)
can be integrated formally, leading to

−Sn(T ) =

∫ T

0

Pn(T
′) dT ′ = cnT + dn

∫ T

0

[
Ck?(T

′)
]∗

dT ′. (5.5)

This expression contains a secular term which suggests a break-down of our expansion
for T = O(ε−1), i.e. t = O(ε−2). However, this secularity can be removed by allowing
the Rossby-wave amplitudes R1 and R2 to depend on T2 := εT = ε2t. On that
time scale, the terms cn simply lead a nonlinear frequency shift of the Rossby waves
associated with the presence of harmonics.

5.2. Inner solution

Since the width of the critical layer has been estimated as O(ε), we define the stretched
coordinate

Y =
y − y?
ε

,

which is O(1) in the inner region. In terms of this variable, the outer solution
ψ(0) + εψ(1) + · · · takes the form

ψ = ψ
(0)
? + ε

(
Y ψ

(0)
y? + ψ

(1)
?

)
+ O(ε2 ln ε). (5.6)

This expansion provides the boundary condition for the inner expansion as Y → ±∞.
In principle, higher-order terms can be evaluated; in particular the O(ε2 ln ε) term in
(5.6) results from logarithmic terms in ψ(2,s) and ψ(2,r). For the O(ε2) term, one must
calculate the dominant behaviour of ψ(3) near the critical level. These calculations
are very similar to those of Warn & Warn (1978), so we omit the details and give
only the higher-order term that is crucial for the critical-layer equation, namely that
associated with the velocity jump in ψ(1,s). It is obtained from (5.1) and (A 3) and is
given by

ε2 1
2
|Y |Re

[ ∞∑
k=1

λk(y?)Ck eikx

]
, (5.7)
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corresponding to the velocity jump[
∂ψ(1,s)

∂y

]y+
?

y−?

= Re

[ ∞∑
k=1

λk(y?)Ck eikx

]
. (5.8)

We now expand the streamfunction inside the critical layer as

ψ = ψ
(0)
? (x, t) + ε

(
Y ψ

(0)
y? + ψ

(1)
?

)
+ ε2 ln εΨ (l,2)(x, t, T ) + ε2Ψ (2)(x, Y , t, T ) + · · · .

In writing this expansion, we have anticipated the fact that the O(1) and O(ε) terms
are entirely fixed by the boundary conditions (5.6). The same holds for Ψ (l,2) which
we do not detail here. Introducing this expansion in the nonlinear vorticity equation
(2.1) leads to a sequence of evolution equations. At O(ε0), we find

LΨ (2)
Y Y + ∂tψ

(0)
xx? + Q′?∂xψ

(0)
? = 0, (5.9)

where

L := ∂t + ∂xψ
(0)
? ∂Y .

The operator L, which appears at each order, can be simplified by introducing the
new independent variables

τ = t, ξ = x, η = Y +
q

(0)
?

Q′?
. (5.10)

Using the leading order for equation for ψ(0) at y = y? leads to

L = ∂τ.

The general solution of (5.9) is therefore

Ψ
(2)
Y Y = ψ

(0)
yy? + Z(ξ, η, T ),

where Z is an arbitrary function. The leading-order vorticity within the critical layer,
given by ψ

(0)
xx? + Ψ

(2)
Y Y , is thus the sum of the Rossby-wave vorticity q

(0)
? and of

Z(ξ, η, T ), the latter being the leading-order vorticity induced by the Rossby-wave
interaction. Z is the central quantity for the critical-layer dynamics; interestingly, it
is not entirely slow, as dependence on the fast time t is contained in the variable
transformation (5.10). An evolution equation for Z is now derived.

At O(ε), we find the equation

LΨ (3)
Y Y + Y

(
∂tψ

(0)
xxy? +U ′?∂xq

(0)
y? + Q′?∂xψ

(0)
y? + Q′′?∂xψ

(0)
?

)
+ ∂TZ +

(
U ′?Y − ψ

(0)
y?

)
∂xZ +

(
Y ψ

(0)
xy? + ψ

(1)
x?

)
∂Y Z

+ ∂tψ
(1)
xx? + Q′?∂xψ

(1)
? + ψ

(0)
x?ψ

(0)
xxy? − ψ(0)

y? q
(0)
x? = 0.

A first simplification can be made by noting that the expansion of the linear equation
for the Rossby waves around y? yields

∂tq
(0)
y? +U ′?∂xq

(0)
y? + Q′?∂xψ

(0)
y? + Q′′?∂xψ

(0)
? = 0.

Therefore, substituting

Ψ
(3)
Y Y = Y ψ

(0)
yyy? +W (ξ, η, τ, T )
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and using the transformation (5.10) leads to

∂τW + ∂TZ +

[
U ′?

(
η − q

(0)
?

Q′?

)
− ψ(0)

y?

]
∂ξZ

+

[
η

(
ψ

(0)
xy? +

U ′?q
(0)
x?

Q′?

)
+ ∂ξψ

(1)
? + v?

]
∂ηZ

+ ∂τψ
(1)
xx? + Q′?∂ξψ

(1)
? + ∂(ψ(0), q(0))? = 0, (5.11)

where

v? := −
(
ψ

(0)
xy?q

(0)
?

Q′?
+
ψ

(0)
y? q

(0)
x?

Q′?
+
U ′?q

(0)
? q

(0)
x?

Q′?
2

)
,

and ∂(ψ(0), q(0))? denotes the nonlinear advection of the Rossby waves evaluated at
y = y?. Equation (5.11), which governs the fast evolution of W (in the transformed
coordinate system), contains secular terms, namely those that are independent of τ.
The solvability of (5.11) thus requires that those terms cancel; this provides the slow
evolution equation for Z:

∂TZ +U ′?η ∂ξZ +
(
∂ξψ

(1,s)
? + v?

)
∂ηZ + Q′? ∂ξψ

(1,s)
? + ∂(ψ(0), q(0))? = 0, (5.12)

where an overbar denotes the part with zero fast frequency. We can evaluate explicitly

∂(ψ(0), q(0))? = − 1
2
Re
[
(R1R2)

∗f+(y?) eik?ξ
]

= −Re
(
ik?h? eik?ξ

)
and

v? = − k?

2Q′?
Re

{
i(R1R2)

∗
[
(ψ1)

′ q2 + (ψ2)
′ q1 +

U ′?
Q′?
q1q2

]
?

eik?ξ

}
:= Re

(
vk? eik?ξ

)
.

Both terms are independent of T (but in principle dependent on T2) and oscillatory
in ξ with wavenumber k?.

Equation (5.12) governs the critical-layer dynamics. It is supplemented by a relation
between ψ

(1,s)
? and Z provided by the matching condition on the streamwise velocity

across the critical layer. From (5.7)–(5.8) and the fact that η ≈ Y for Y → ±∞, it is
found that ∫ +∞

−∞
Z dη = Re

[ ∞∑
k=1

Ckλk(y?) eikξ

]
, (5.13)

where a Cauchy principal value is taken (it can be shown that Z ∼ 1/η for η → ±∞).
The coefficients Ck are thus determined by

Ck =
1

λk(y?)

∫ +∞

−∞
Zk dη, (5.14)

where the Fourier coefficients Zk are defined by

Z = Re

( ∞∑
k=1

Zk eikξ

)
.

Finally ψ(1,s)
? is derived from (5.1) written in the form

ψ
(1,s)
? = Re

[
φf (y?) + eik?ξ

∞∑
k=1

Ckψk(y?; y?) eikξ

]
. (5.15)
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Equations (5.12), (5.14) and (5.15) form a closed system which can be integrated
forward in time to determine the evolution of Z and of the Ck . This system is
similar to that obtained for the forced critical layer by Stewartson (1978) and Warn
& Warn (1978), although several differences arise from the transformed cross-stream
coordinate, the additional cross-stream advection by v?, and the fact that the forcing
is present in the vorticity equation (5.12) but not in the equation for Ck? . The
correspondence with the forced critical layer can be seen more clearly by defining a
modified streamfunction D(ξ, T ) according to

∂ξD = ∂ξψ
(1,s)
? + v?, (5.16)

so that (5.12) takes the form(
∂T +U ′?η ∂ξ + ∂ξD ∂η

) (
Z + Q′?η

)
+ F = 0, (5.17)

where

F(ξ, T ) = ∂(ψ(0), q(0))? − Q′?v? =: Re
[
Fk?(T ) eik?ξ

]
. (5.18)

From (5.14), (5.15) and (5.16) we find a relationship between the modified stream-
function D and the critical-layer vorticity Z very similar to that found for the forced
critical layer:

Dk =
ψk(y?; y?)

λk(y?)

∫ +∞

−∞
Zk dη +

(
φf
? − i

vk?
k?

)
δk,k? . (5.19)

Only the presence of the internal forcing F in (5.17) prevents a complete analogy
between the critical layer generated by Rossby-wave interaction and the forced critical
layer.

The ratio ψk(y?; y?)/λk(y?), which is entirely determined by the external parameters
of the system (channel geometry and basic flow), governs the strength of the coupling
between the critical-layer vorticity and the cross-stream velocity; it is crucial for the
nonlinearity within the critical layer. When it tends to infinity, i.e. when λk(y?) → 0,
the configuration is that of the Rossby-wave resonance studied by Ritchie (1985) for
the forced critical layer. When λk?(y?) → 0, i.e. when the mode directly forced by
the Rossby-wave interaction has continuous streamwise velocity at y = y?, the above
analysis is not valid: one can expect the behaviour of the system to be closer to that
of a resonant wave triad in so far as the disturbance excited by the Rossby-wave
interaction attains an amplitude comparable to that of the initial waves everywhere
in the flow.

The transformed coordinate η defined in (5.10) emerges from our analysis as the
natural coordinate for the description of the critical-layer dynamics. It is interesting
to remark that it has a straightforward physical interpretation. Since δ := −q(0)

? /Q
′

is the leading-order (O(ε)) approximation to the cross-stream displacement induced
by the two Rossby waves, η = Y − δ is the cross-stream coordinate in a reference
frame advected by the Rossby waves. The critical-layer vorticity is thus advected in
the cross-stream direction by the oscillatory velocity field induced by the waves. The
extra cross-stream velocity v? which appears as a consequence of the cross-stream
variable transformation is analogous to a Stokes drift.

Although equations (5.12), (5.14) and (5.15), or equivalently (5.17) and (5.19), are
sufficient to determine the critical layer dynamics, it is necessary to return briefly to
(5.11) in order to derive the coefficients of the equations governing the modification
of the Rossby waves in the outer region. When (5.12) is satisfied, the secular terms are
removed from (5.11) which can then be solved; this equation shows that W oscillates
with frequency ω1 = −ω2 and its harmonics. As a consequence, the dynamics within
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the critical layer imposes a jump in the y-derivatives of ψ(2,r) and ψ(2,h). This is
important not only for ψ(2), but also for ψ(1), since, as already mentioned, the
discontinuity in ψ(2,r) appears in the solvability condition determining the evolution
of the Sn and hence of ψ(1,r) (see Appendix B for details).

6. A model equation
For the forced critical layer, much insight has been gained by considering the special

case often referred to as the SWW solution for which the velocity at the critical level,
∂ξD, decouples from the critical-layer vorticity Z . The vorticity equation then becomes
linear and can be integrated analytically. Stewartson (1978), who derived the analytical
solution, initially conceived this situation as an ad hoc simplification of the nonlinear
critical-layer equation, but Warn & Warn (1978) noted that the decoupling holds
exactly (in an asymptotic sense) for certain parameter settings. With our notation, it
can indeed be seen from (5.19) that the decoupling occurs provided that

ψk(y?; y?) = 0, ∀k.
This is possible in the long-wave limit µ→ 0 – because ψk(y, y?) is then independent
of k – provided that β belongs to a discrete set depending on the critical level position
y?. For fixed shear amplitude and dimensional β parameter, this can be achieved by
tuning the distance between the channel walls and the critical level.

It is tempting to adapt the SWW solution to the type of critical layer considered in
this paper. However, our derivation of the critical-layer evolution equation does not
carry over in the long-wave limit upon which the SWW solution relies. This is because
we have assumed that the harmonics of the initial Rossby waves are non-resonant,
while long waves are non-dispersive and thus have resonant harmonics. In fact, on a
time scale T = O(1), long Rossby waves do not maintain their sinusoidal structure
in x− ct since they obey a Korteweg–de Vries (KdV) equation (see Redekopp 1977),
and the concept of resonant interaction exploited here is not meaningful. (Redekopp
& Weidman 1978 analysed the interactions of two long Rossby waves in a shear
and found that the evolution of their amplitudes is governed by two coupled KdV
equations.) Nevertheless we shall briefly examine the equivalent of the SWW solution
for our system, considering it in the spirit of Stewartson (1978), i.e. as a result derived
from a model equation rather than a self-consistent solution of the full equations.
For the forced critical layer, many features exhibited by the SWW solution are quite
generic and relevant to less contrived situations (cf. Haynes 1989). The same is likely
to be true for the critical layer studied here. In this case, the SWW solution provides
a simple way of assessing the effect of the variable transformation (5.10).

Consider the critical-layer equation (5.17) with

Dk =

(
φf
? − i

vk?
k?

)
δk,k?

in place of (5.19). From this definition and from (5.18) it can be verified that Dk and
Fk are in quadrature; we can thus write D = d cos(k?ξ) and F = f sin(k?ξ), where d, f
are real constants and d > 0 by shifting the origin of ξ. The critical-layer equation
then becomes [

∂T +U ′?η ∂ξ − dk? sin(k?ξ)∂η
]
Z − g sin(k?ξ) = 0, (6.1)

where g := k?Q
′
?d−f. Note that we can assume that g 6= 0 since g = 0 corresponds to

the situation mentioned at the end of § 3, where the linear solution remains valid for
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Figure 4. Vorticity Z + aη with a = 1/2 in the (ξ, η)-plane for (a) T = 1, (b) 2.5, (c) 4.
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Figure 5. Vorticity Z + aY with a = 1/2 in the (x, Y )-plane for (a) T = 1, (b) 1.08, (c) 1.16.
The Rossby-wave period is 0.251 in terms of T .

all time. Now, taking U ′? > 0, and scaling T , ξ, η and Z by (k2
?U
′
?d)
−1/2, k−1

? , (d/U
′
?)

1/2

and g(k2
?U
′
?d)
−1/2 leads to the evolution equation in the form

(∂T + η∂ξ − sin ξ∂η)Z − sin ξ = 0.

This is exactly (up to the sign of Z) the equation solved by Stewartson (1978) in terms
of elliptic functions. Although the relative vorticity Z is the same as that found in
the SWW case, it is not so for the total slow (in the coordinate system (ξ, η)) vorticity
Z + Q′?η. In terms of the scaled variables, this total vorticity is indeed given by the
expression

Z + aη, with a :=
Q′?k?d

g
,

which is equivalent to that found for the SWW solution only when a = 1. The
parameter a is fixed by the structure of the interacting Rossby waves. It is equal to 1
if f = 0 and thus F = 0 in (5.17), in which case (5.17) describes the conservation of
the total vorticity.

We illustrate the analytical solution by considering a particular case with a = 1/2.
Figure 4 shows the time evolution of the scaled vorticity Z+aη in the (ξ, η)-plane where
it evolves on the slow time scale T only. It displays a cat’s eye somewhat different from
that obtained for the SWW solution because a 6= 1. The evolution in the physical space
(x, Y ) is computed taking the wavenumbers k1 = 0.5 and k2 = −1.5, so that k? = 1,
consistently with the scaling. The frequencies are ω1 = −ω2 = −25ε corresponding to
a Rossby-wave period of 2π/25 = 0.251 in terms of the slow time T , and the Rossby-
wave amplitudes are taken as R1 = 0.6 and R2 = 0.8. All the numerical values have
been arbitrarily chosen but they do not affect much the qualitative aspects of the solu-
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Figure 6. Same as figure 5 but for (a) T = 4, (b) 4.08, (c) 4.16.

tion. Figures 5 and 6 display the evolution of the scaled vorticity Z+aY in the (x, Y )-
plane. (The vorticity directly associated with the Rossby waves should be added to ob-
tain the (scaled) total vorticity in the critical layer which is given by Z+aη.) T is used
as time variable, with t = ε−1T , and the vorticity is shown at three different times sep-
arated by approximately one-third of the fast period ω1 = −ω2, starting at T = 1 (fig-
ure 5) and T = 4 (figure 6). The figures thus illustrate the fast evolution of the vorticity
due to the dependence of Z on t. A complete wavelength of the longest Rossby wave
is plotted, so two cat’s eyes appear in each panel. The overall picture is that of strongly
disturbed cat’s eyes, with a propagation of the disturbance in the negative x-direction.

In the framework of the model equation (6.1), the modification of the Rossby-
wave amplitudes given by (5.2) and (5.5) can be understood qualitatively by using
Stewartson’s estimate for∫ ∞

−∞
Z dη = Re

[ ∞∑
k=1

λk(y?)Ck eikξ

]
,

which he denotes by B, for T → ∞ (equation (4.14) in Stewartson 1978). Integrating
this estimate with respect to T from 0 to ∞ yields a finite value. Hence, one can
expect the quantity ∫ T

0

[Ck?(T
′)]∗ dT ′, (6.2)

which governs the modification of the Rossby waves due to the formation of a
critical layer (see (5.5)), to be finite as T → ∞†. This indicates that the Rossby wave
modification saturates for large time. Of course this conclusion is obtained under
the ad hoc assumptions that allowed the derivation of the SWW solution; whether it
holds in more general circumstances remains to be verified.

7. Discussion
In this paper we have shown that the interaction between Rossby waves in a shear

flow leads to the formation of a nonlinear critical layer, provided that a resonance
condition is satisfied. This condition, which ensures that the Rossby waves constitute
a resonant triad with a singular mode of the continuous spectrum, is given by an
inequality; it is thus easier to satisfy than the standard condition for wave-triad

† From equation (2.30) in Haynes (1989), it can also be noted that the imaginary part of (6.2)
is the time-integrated absorptivity introduced by Killworth & McIntyre (1985) who have computed
its limiting value as T →∞.
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interaction. A general conclusion can be drawn from our result: in the presence of
(regular) Rossby waves, the dynamics of a weakly disturbed, monotonic, unforced
shear flow does not necessarily remain linear or weakly nonlinear for all time. This
conclusion is similar to that obtained by Brunet & Warn (1990) and Brunet & Haynes
(1995) for a non-monotonic shear (parabolic jet with weak vorticity gradient). Both
conclusions contrast with Tung’s (1983) result which applies to monotonic shear
flows without Rossby waves and states that the nonlinearity remains weak if it is so
initially.

The Rossby-wave interaction discussed here represents a new mechanism for the
development of a nonlinear critical layer, in addition to the mechanisms associated
with external forcing (e.g. Stewartson 1978; Warn & Warn 1978), marginal instability
(e.g. Brown & Stewartson 1978; Hickernell 1984; see also Goldstein 1994 and refer-
ences therein), or with non-monotonic shear (Brunet & Warn 1990; Brunet & Haynes
1995). Recently, Balmforth, del-Castillo-Negrete & Young (1997) derived a critical-
layer equation for a monotonic flow containing a vorticity defect, i.e. a narrow region
where the vorticity gradient is non-zero. In that situation, the critical-layer width is
fixed by that of the vorticity defect; and if there is no forcing nor instability the
amplitude of the initial disturbance can be chosen small enough so that the evolution
remains linear for all time. For the Rossby-wave interaction or the non-monotonic
shear, however, the critical-layer width is determined by the amplitude of the initial
disturbance and the strongly nonlinear behaviour is inevitable.

Two different approaches are employed to examine the nonlinear evolution of
the interacting Rossby waves and of the continuous spectrum: a weakly nonlinear
analysis and a critical-layer analysis. It is instructive to compare some aspects of
these two approaches. In deriving the weakly nonlinear amplitude equations, we
mentioned that the system obtained by direct use of the normal-mode expansion
cannot be easily truncated. This is because the linear evolution of a superposition of
singular modes leads to a linearly growing gradient of vorticity, so the nonlinear terms
corresponding to the interaction of Rossby waves with singular modes are themselves
linearly growing in time. We introduced the transformation (4.2) of the dependent
variable q in order to remove these terms from the evolution equation, but pointed
out that the transformation is subject to condition (4.3) which is likely to be violated
for long time.

In the matched asymptotics formalism used in the critical-layer analysis, the terms
corresponding to the interaction between Rossby waves and singular modes play a
particular role too. In that formalism, the vorticity associated with singular modes
is given at leading order by Z = Ψ

(2)
Y Y − ψ

(0)
yy?, and the interaction with Rossby

waves appears as the term ∂xψ
(0)
? ∂Y Ψ

(2)
Y Y in (5.9). This term is eliminated using the

transformation of the independent variables (5.10), which we interpreted as the use of a
reference frame advected by the Rossby waves. In this reference frame, the advection of
the singular-mode vorticity by the waves disappears and the corresponding secularity
is removed. (Note that the same variable transformation was previously introduced
by G. Brunet 1989, unpublished notes, in a study of the interaction between a sheared
disturbance and a Rossby wave.)

The two variable transformations we have introduced, that of the dependent vari-
able (4.2) and that of the independent variables (5.10), are in fact closely connected:
for Q′ = Q′? (as is approximately the case within the critical layer), it can be verified
that (4.2) is equivalent to

q(x, y, t) = q̃(x, y + εq/Q′?, t)
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to first order in ε, assuming (4.3). (This transformation is the same as the one
introduced by Zakharov & Piterbarg (1988) to derive canonical Hamiltonian equations
for Rossby waves.) When q is approximated by its leading-order component q(0), the
transformation becomes equivalent to (5.10) since y + εq(0)/Q′? = y? + εη.

The above discussion suggests the possibility of extending (4.2) to remove the
constraint (4.3) which limits the validity of our weakly nonlinear expansion. Using
the orthogonality relations (A 5), the disturbance vorticity can always be unambigu-
ously decomposed into a Rossby wave part, q(r) say, and a part associated with
the singular modes. Now, when the nonlinearity is weak, the independent variable
transformation ỹ := y + εq(r)/Q′ is in general well defined, because the y-derivatives
of q(r) remains bounded in the linear approximation. Deriving an evolution equa-
tion for q̃(x, ỹ, t) := q(x, y, t) with ỹ as independent cross-stream coordinate, one
finds a weakly nonlinear equation similar to (4.4): it has the same linear part and
the advection of the singular modes by the Rossby waves is absent (but the self-
advection of the singular modes remains). The normal-mode expansion can then
be used for q̃ and again leads to amplitude equations without linearly growing
terms.

The critical-layer analysis developed in this paper is very similar to that of Stew-
artson (1978) and Warn & Warn (1978), except for additional elements related to
the presence of Rossby waves at leading order. Among these, the modification of
the Rossby-wave amplitudes induced by their interaction is particularly interesting.
It is a reflection of the fact that we are considering an unforced problem: the Rossby
waves are acting as forcing for the critical layer which, in turn, affects their dynamics.
The derivation of the equations governing this modification is fairly tedious, but,
apart from its technical details, it is important since it leads to the conclusion that the
modification of the waves represents only a small O(ε) correction relative to the initial
Rossby-wave amplitudes. Such a small modification is not incompatible with the fact
that the Rossby waves provide most of the energy for the critical-layer formation
because of the small width of the critical layer.

The analogy between the problem considered here and the forced critical layer
along with the use of the SWW solution provide a qualitative understanding of
the behaviour of the critical layer generated by Rossby-wave interaction. Within
the critical layer, we can expect a complex wrapping up of the vorticity by the
streamline pattern generated by the basic flow, the two Rossby waves, and the cross-
stream velocity ∂ξψ

(1,s), all of these components having the same importance. The
slow evolution of the flow is dominated by cat’s eye structures, but fast oscillations,
associated directly with the presence of the Rossby waves, and indirectly with the
advection of the critical-layer vorticity, are superposed on the slow motion. Outside
the critical layer, the motion remains essentially linear, although at O(ε) all harmonics
are excited because of the velocity jump imposed by the evolution inside the critical-
layer. Of course, only numerical simulations, of the critical layer equation or of
the original nonlinear equation, can give a detailed picture of the critical layer
dynamics generated by Rossby-wave interaction. We leave such simulations for future
work.
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Appendix A. Normal modes

Introducing normal-mode solutions of the form

ψ(x, y, t) = Re
[
ψk(y, t) eikx

]
= Re

[
ψk(y) eik(x−ct)]

into the linearization of (2.1) leads to the Rayleigh–Kuo equation which, together
with the boundary conditions ψk(0) = ψk(1) = 0, defines an eigenvalue problem, with
the phase velocity c as eigenvalue. With the assumption Q′ > 0 the solutions are
stable modes of two types: (regular) Rossby waves, with c < Um, and singular modes,
with Um < c < UM (e.g. Drazin, Beaumont & Coaker 1982).

Rossby waves are solutions of the homogeneous Rayleigh–Kuo equation; for
each k, they form a discrete spectrum with eigenvalues c = ck,n and eigenfunctions
ψk,n(y), n = 1, 2, . . . .

Singular modes exist for each Um < c < UM, or equivalently for each critical-level
position yc defined by U(yc) = c. They are solutions of the singular equation

∂2

∂y2
ψk(y; yc)− k2ψk(y; yc) +

Q′(y)

U(y)−U(yc)
ψk(y; yc) = λk(yc)δ(y − yc), (A 1)

with homogeneous boundary conditions. Here, λk(yc) is a velocity jump, i.e.

λk(yc) =

[
∂ψk(y; yc)

∂y

]y+
c

y−c

, (A 2)

and it is determined by the normalization chosen for ψk(y; yc). The streamfunction
ψk(y; yc) is continuous at y = yc, but the corresponding vorticity must be interpreted
as the distribution

qk(y; yc) = λk(yc)δ(y − yc)−P
Q′(y)

U(y)−U(yc)
ψk(y; yc),

where P denotes the Cauchy principal value. The structure ψk(y; yc) can be found
by solving a regular integral equation (Kamp 1991; Balmforth & Morrison 1998), or
by using a combination of two independent solutions of the homogeneous version of
(A 1) on each side of the critical level. Near the critical level y?, the singular mode
streamfunction is given by

ψk(y; yc) = ψk(yc; yc)

[
1− Q′(yc)

U ′(yc)
(y − yc) ln |y − yc|

]
+νk(yc)(y − yc) + 1

2
λk(yc)|y − yc|+ O[(y − yc)2 ln |y − yc|], (A 3)

where νk(yc) is a smooth function determined by the boundary conditions.
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Together with the Rossby modes, the singular modes can be used to expand any
Fourier component k of the streamfunction and vorticity according to

ψk(y, t) =
∑
n

Ak,n(t)ψk,n(y) e−iωk,nt +

∫ 1

0

Ak(yc; t)ψk(y; yc) e−ikU(yc)t dyc,

qk(y, t) =
∑
n

Ak,n(t)qk,n(y) e−iωk,nt +

∫ 1

0

Ak(yc; t)qk(y; yc) e−ikU(yc)t dyc.

 (A 4)

The amplitudes Ak,n(t) and Ak(yc; t) may be deduced from ψk(y, t) or qk(y, t) using
the orthogonality relations derived by Balmforth & Morrison (1998), which may be
written∫ 1

0

q̄k,n(y) qk,n′(y) dy = δn,n′ and

∫ 1

0

q̄k(y; yc) qk(y; y′c) dy = δ(yc − y′c), (A 5)

with well-defined functions q̄k,n(y) and q̄k(y; yc) (see Balmforth & Morrison 1998;
see also Vanneste 1996). By construction (A 4) with constant amplitudes Ak,n(t) and
Ak(yc; t) provides an exact solution to the linearized equations of motion. Note that
for constant Ak(yc; t) the streamfunction associated with singular modes decays like
t−2 for large t, for ψk(y; yc) is continuously differentiable only once.

Appendix B. Modification of the Rossby waves
Evolution equations for S1(T ) and S2(T ) determining the small perturbation of the

Rossby-wave amplitudes (see (5.2)) are found from the solvability conditions for ψ(2,r).
From (5.3), one can see that the forcing for ψ(2,r) is given by

−∂Tq(1,r) − ∂(ψ(1,s), q(0))− ∂(ψ(0), q(1,s))

plus the part of −∂(ψ(0), q(1,h)) − ∂(ψ(1,h), q(0)) oscillating with frequencies ω1 and ω2.
This forcing involves all wavenumbers, but only the part with wavenumbers k1 and
k2 is of interest here since it is associated with resonance. Let Φ1(y, T ) and Φ2(y, T )
be the components of ψ(2,r) with wavenumber k1 and k2, respectively. They satisfy

ikn
[
(U − cn)

(
∂2
yyΦn − µ2(kn)

2Φn
)

+ Q′Φn
]

= −∂TSn qn − vn, n = 1, 2, (B 1)

where vn(y, T ) contains the nonlinear (Jacobian) terms. In particular, vn contains
contributions from ∂(ψ(1,s), q(0))+∂(ψ(0), q(1,s)) which are singular, so that vn ∼ (y−y?)2

near y?.
To find the solvability condition, we employ a method introduced by Benney &

Maslowe (1975). Let Φan and Φbn be two independent homogeneous solutions of (B 1).
For convenience, we take them such that Φan(y?) = 0. The general solution of (B 1) is
then written

Φn =

{
a−n Φ

a
n(y) + b−n Φ

b
n(y)− ∂TSn un(y)− wn(y, T ), y < y?

a+
n Φ

a
n(y) + b+

n Φ
b
n(y)− ∂TSn un(y)− wn(y, T ), y > y?,

(B 2)

where un and wn are non-homogeneous solutions corresponding to qn and vn, re-
spectively. They can be determined for instance by using the method of variation
of parameters. Near the critical level, wn ∼ ln |y − y?|. The piecewise definition (B 2)
of the Φn is essential because the dynamics inside the critical layer imposes a jump
in ∂yψ

(2,r) at the critical level. Let jn(T ), n = 1, 2, be the parts of this jump with
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space–time dependence exp[i(knx− ωnt)], i.e.

jn(T ) =

[
∂Φn

∂y

]y+
?

y−?

.

The jn are determined by the dynamics inside the critical layer and will be evaluated
explicitly below. Taking the jumps jn into account and enforcing continuity at y = y?,
we can rewrite (B 2) as

Φn = anΦ
a
n(y) + bnΦ

b
n(y)± jn(T )

2(Φan)
′
?

Φan(y)− ∂TSn un(y)− wn(y, T ), (B 3)

where (Φan)
′
? = dΦan/dy|y? and where the + (−) sign corresponds to y > y? (y < y?). The

constants an and bn should be determined by applying the homogeneous boundary
conditions at y = 0, 1. However, the determinant Φan(1)Φbn(0)−Φan(0)Φbn(1) = 0 because
(B 1) has a non-trivial homogeneous solution (the Rossby wave with frequency ωn).
Therefore, a solution exists only if a compatibility condition of the form

∂TSn + Pn(T ) = 0, n = 1, 2, (B 4)

is satisfied, where

Pn(T ) =
1

Φan(1)un(0)− Φan(0)un(1)

[
Φan(1)wn(0, T )− Φan(0)wn(1, T ) +

jn(T )

(Φan)
′
?

Φan(1)Φan(0)

]
.

(B 5)

The two equations for (B 4) govern the evolution of the modification ψ(1,r) of the
Rossby waves.

We now turn to the derivation of the velocity jumps j1 and j2. These jumps are
associated with the O(ε) critical-layer vorticity W which evolves according to (5.11).
Precisely, writing

W = ψ
(1,r)
yy? + Re

[
W1(η, T ) ei(k1ξ−ω1τ) +W2(η, T ) ei(k2ξ−ω2τ)

]
+ · · · , (B 6)

where · · · denotes terms with wavenumbers and frequencies different from (k1, ω1)
and (k2, ω2), leads to

jn =

∫ +∞

−∞
Wn dη. (B 7)

Explicit expressions for W1 and W2 are readily derived from (5.11); they are given
by

Wn =
1

2ωn

{
k?

[
U ′

Q′
qm + (ψm)′

]
?

(
RmZk?

)∗
−km

(
η

[
U ′

Q′
qm + (ψm)′

]
?

(Rm)∗ + ψm(Sm)∗
)(

∂ηZk?
)∗}

, (B 8)

where m = 3 − n. Introducing this result into (B 7), integrating by parts and using
(2.2) and (5.14) yields

jn = − 1

2ωn
knλk?(y?)

[
U ′

Q′
qm + (ψm)′

]
?

(RmCk?)
∗. (B 9)

This expression (for n = 1, 2) completes our determination of the coefficients Pn given
by (B 5), which govern the modification of the Rossby waves. From (B 5) and (B 9)
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one sees that the Pn have the generic form

Pn = cn + dn[Ck?(T )]∗,

where cn and dn are complex constants. The dependence on the critical-layer-controlled
quantity Ck? stems from two effects: the dependence of the outer streamfunction ψ(1,r)

on Ck? , and the direct role of the inner dynamics in the solvability condition as
embodied in the velocity jumps jn.
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